Geometric inequalities

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some weighted operator geometric mean inequalities

In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...

متن کامل

Geometric Height Inequalities

0. The Results. Let f : X → B be a fibration of a compact smooth algebraic surface over a compact Riemann surface B, denote by g ≥ 2 the genus of a generic fiber of f and by q the genus of B. Let s be the number of singular fibers of f and ωX/B be the relative dualizing sheaf. Let C1, · · · , Cn be n mutually disjoint sections of f , and denote by D the divisor ∑n j=1Cj. Then the main result we...

متن کامل

IMO/KKK/Geometric Inequality/1 Geometric Inequalities

Notation and Basic Facts a, b, and c are the sides of ∆ABC opposite to A, B, and C respectively. [ABC] = area of ∆ABC s = semi-perimeter =) c b a (2 1 + + r = inradius R = circumradius Sine Rule: R 2 C sin c B sin b A sin a = = = Cosine Rule: a 2 = b 2 + c 2 − 2bc cos A [ABC] = B sin ac 2 1 A sin bc 2 1 C sin ab 2 1 = = = R 4 abc =) c s)(b s)(a s (s − − − (Heron's Formula) = 2 cr 2 br 2 ar + + ...

متن کامل

On Relative Geometric Inequalities

Let E be a subset of a convex, open, bounded, planar set G. Let P (E, G) be the relative perimeter of E (the length of the boundary of E contained in G). We obtain relative geometric inequalities comparing the relative perimeter of E with the relative diameter of E and with its relative inradius. We prove the existence of both extremal sets and maximizers for these inequalities and describe the...

متن کامل

Discovering and Proving Geometric Inequalities

’When computers were first conceived, the designed, and finally implemented, few people (if any) would have conjectured that in 1987 computer programs would exist capable of proving theorems from diverse areas of mathematics. Even further, if a person at the inception of the computer age had seriously predicted that computer programs would be used to occasionally answer open questions taken fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 1988

ISSN: 0001-8708

DOI: 10.1016/0001-8708(88)90083-7